Designed Growth of Covalently Bonded WO3/PEDOT Hybrid Nanorods Array with Enhanced Electrochromic Performance

Author:

Zhang Qing1,Cao Yinhuan23,Chen Chuansheng4,Zhang Xueru5

Affiliation:

1. Department of Intelligent Manufacturing, Anhui Vocational and Technical College, Hefei 230011, China

2. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China

3. Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China

4. Department of Architecture and Engineering, Anhui Vocational and Technical College, Hefei 230011, China

5. Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, China

Abstract

A covalently bonded WO3/PEDOT hybrid nanorods array has been prepared through solvothermal, oil bath, and electrochemical deposition methods using KH57 as a coupling agent. The obtained WO3/PEDOT shows substantially increased electrochromic performance with an increased response speed (3.4 s for coloring and 1.2 s for bleaching), excellent optical modulation (86.7% at 633 nm), high coloration efficiency (122.0 cm2/C at 633 nm), and distinguished cyclic stability. It was found that the covalent bond interaction between WO3 and PEDOT plays an essential role in property enhancement. The covalently bonded inorganic/organic hybrid nanorods array may promise great potential in developing smart-display and energy-efficient materials and devices featuring low energy consumption, cost effectiveness, and environmental protection.

Funder

Natural Science Research Project for Anhui Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3