K-Means Clustering Algorithm Based on Chaotic Adaptive Artificial Bee Colony

Author:

Jin Qibing,Lin Nan,Zhang Yuming

Abstract

K-Means Clustering is a popular technique in data analysis and data mining. To remedy the defects of relying on the initialization and converging towards the local minimum in the K-Means Clustering (KMC) algorithm, a chaotic adaptive artificial bee colony algorithm (CAABC) clustering algorithm is presented to optimally partition objects into K clusters in this study. This algorithm adopts the max–min distance product method for initialization. In addition, a new fitness function is adapted to the KMC algorithm. This paper also reports that the iteration abides by the adaptive search strategy, and Fuch chaotic disturbance is added to avoid converging on local optimum. The step length decreases linearly during the iteration. In order to overcome the shortcomings of the classic ABC algorithm, the simulated annealing criterion is introduced to the CAABC. Finally, the confluent algorithm is compared with other stochastic heuristic algorithms on the 20 standard test functions and 11 datasets. The results demonstrate that improvements in CAABA-K-means have an advantage on speed and accuracy of convergence over some conventional algorithms for solving clustering problems.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference38 articles.

1. Algorithm AS 136: A K-Means Clustering Algorithm

2. A rapid hybrid clustering algorithm for large volumes of high dimensional data;Punit;IEEE Trans. Knowl. Data Eng.,2018

3. Improve BIRCH algorithm for big data clustering

4. Bayesian analysis of data from segmented super-resolution images for quantifying protein clustering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3