Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation

Author:

Yuan Yanping,Li Dongfang,Han Weina,Zhao Kai,Chen Jimin

Abstract

Laser-induced periodic surface structures have been extensively studied for various materials because of their promising applications. For these applications, uniform rippled structures with well-defined large areas are required. However, the efficient fabrication of uniform rippled structures is a challenge. Morphologies of rippled structures of multiple-shot-ablated regions considerably affect the processing efficiency of uniform rippled structures because incubation effects are crucial. In this study, the effects of a pulse number and irradiation modes on surface morphologies of rippled structures on the titanium surface are experimentally studied. The experimental results indicate the following: (1) Samples first irradiated using several shots and then using remaining shots by designing laser pulse irradiation modes exhibit improved surface morphologies, such as larger ablation areas and finer rippled structures. (2) When the pulse number in the first series is less than that in the second series, the rippled structures are characterized using larger areas and periods. (3) The ablated areas with rippled structures increase with the increasing number of pulses. (4) The periods of ripples reduce with the increasing number of pulses. Therefore, according to different requirements, uniform rippled structures can be efficiently fabricated and adjusted using the designed laser pulse modes and pulse number.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3