Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties

Author:

Trigui Abdelwaheb,Abdelmouleh MakkiORCID

Abstract

Phase change materials (PCMs), as an effective thermal energy storage technology, provide a viable approach to harness solar heat, a green energy source, and optimize energy consumption in buildings. However, the obstacle preventing widespread practical use of PCM is its poor performance in terms of heat transfer and shape stabilization. This article focuses on the application of the shape stabilization method. To improve the thermal conductivity of organic PCMs (hexadecane), copper microparticles are added to form phase change composites (PCC). This process allows an enhanced PCM (75 wt%) that distributes effective thermal storage capabilities while maintaining low cost. SEM, FTIR, ATG, infrared thermography (IRT), and DSC were used to characterize the composites’ micromorphology, chemical composition, thermal degradation stability, and thermal energy storage capabilities. DSC results showed that a proportion of 75 wt% phase change material with 15 wt% Cu had excellent thermal stability and high energy storage density per unit mass. In light of its high latent heat storage capacity of 201.32 J/g as well as its ability to prevent Hexadecane exudation, PCC ensures higher thermal conductivity and shape stability during phase transition than ordinary PCM. The incorporation of Cu to paraffin causes delay in PCM phase transformation, leading it to respond to rapid charging and discharging rates and, consequentially, to challenges in temperature control, as shown by IRT. The new PCCs had favorable thermal stability below 100 °C, which was advantageous for practical application for thermal energy storage and management, and notably for solar thermal energy storage.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3