Tribological Behavior of Boronized Fe40Mn20Cr20Ni20 High-Entropy Alloys

Author:

Guo Xin,Jin Xi,Shi Xiaohui,Yang Huijun,Zhang Min,Qiao Junwei

Abstract

The tribological behavior of hot-rolled and boronized Fe40Mn20Cr20Ni20 high-entropy alloys (HEAs) sliding against a Si3N4 ball was investigated in the air, deionized water and seawater. The results showed that the hot-rolled Fe40Mn20Cr20Ni20 HEA was composed of an FCC (face-centered cubic) phase. In addition, the boronized HEA was composed of a great number of borides, including CrB, FeB, MnB, Fe2B, Fe3B and MnB2. The hardness increased from 139 HV to 970 HV after boronizing. In air, the wear rate decreased from 4.51 × 10−4 mm3/Nm to 0.72 × 10−4 mm3/Nm after boronizing. The wear mechanism transformed from abrasive wear and oxidative wear to the polishing effect. After boronizing, in the deionized water, the wear rate decreased from 1.27 × 10−4 mm3/Nm to 8.43 × 10−5 mm3/Nm. The wear mechanism transformed from abrasive wear and delamination wear to delamination wear. In the seawater, the wear rate decreased by about ten times that of hot-rolled alloy.

Funder

Natural Science Foundation of Shanxi Province, China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3