Author:
Lu Li,Cai Zhipeng,Yang Jia,Liang Zhenxin,Sun Qian,Pan Jiluan
Abstract
During the welding of 690 nickel-based alloy, solidification cracking (SFC) and ductility-dip cracking (DDC) easily forms, which has a negative effect on the quality of welded joints and service life. The present study examined the effects of welding heat input and cladding layers on the SFC and DDC, as well as their formation mechanism. The microstructure observation, elemental distribution, and Varestraint test were carried out. The results show that SFC and DDC were formed for the Inconel filler metal 52M, and SFC is more prone to form than DDC. The alloy elements such as Fe, Si, C, and P from base metal can expand the solidification temperature range, such that the SFC sensitivity increases. With the increase of welding heat input, the grain size of cladding metal is increased with a great SFC sensitivity. The increasing welding heat input also makes DDC possible due to the formation of a large angle grain boundary.
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献