An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA)

Author:

Ullah Haneef,Khan Murad,Hussain IrshadORCID,Ullah IbrarORCID,Uthansakul PeerapongORCID,Khan Naeem

Abstract

As the world population and its dependency on energy is growing exponentially day by day, the existing energy generating resources are not enough to fulfill their needs. In the conventional grid system, most of the generated energy is wasted because of improper demand side management (DSM). This leads to a difficulty in keeping the equilibrium between the user need and electric power production. To overcome these difficulties, smart grid (SG) is introduced, which is composed of the integration of two-way communication between the user and utility. To utilize the existing energy resources in a better way, SG is the best option since a large portion of the generated energy is consumed by the educational institutes. Such institutes also need un-interrupted power supply at the lowest cost. Therefore, in this paper, we have taken a university campus load. We have not only applied two bio-inspired heuristic algorithms for energy scheduling—namely, the Firefly Algorithm (FA) and the Lion Algorithm (LA)—but also proposed a hybrid version, FLA, for more optimal results. Our main objectives are a reduction in both, that is, the cost of energy and the waiting time of consumers or end users. For this purpose, in our proposed model, we have divided all appliances into two categories—shiftable appliances and non-shiftable appliances. Shiftable appliances are feasible to be used in any of the time slots and can be planned according to the day-ahead pricing signal (DAP), provided by the utility, while non-shiftable appliances can be used for a specified duration and cannot be planned with the respective DAP signal. So, we have scheduled shiftable appliances only. We have also used renewable energy sources (RES) for achieving maximum end user benefits. The simulation results show that our proposed hybrid algorithm, FLA, has reduced the cost excellently. We have also taken into consideration the consumers’ waiting times, due to scheduling of appliances.

Funder

Suranaree University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3