Physiologically Based Pharmacokinetic Modelling of UGT Substrate Drugs Lamotrigine and Raltegravir during Pregnancy

Author:

Berezowska Monika1,Coppola Paola1ORCID,Pilla Reddy Venkatesh1ORCID,Sharma Pradeep1ORCID

Affiliation:

1. Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB1 9JS, UK

Abstract

Pregnancy is associated with various physiological changes that can significantly impact the disposition of drugs. To further the insight into how pregnancy affects the pharmacokinetics of drugs at different stages, clinical studies can be simulated using Physiologically Based Pharmacokinetic modelling. PBPK modelling of drugs metabolised by Phase I enzymes (CYPs) in pregnant population models had been reported in the past, while its use in Phase II (UGTs) is not known. In this study, based on the results of a recent meta-analysis, lamotrigine (UGT1A4) and raltegravir (UGT1A1) were selected as candidate drugs, and pregnancy-specific models were developed for both using the Simcyp v.21 simulator. A middle-out strategy was used where previously published drug parameters were adapted from a minimal to a full PBPK model to allow their application for the pregnancy population models using Simcyp PBPK software. Adapted models were successfully validated against observed clinical data both qualitatively (visual overlay of plasma concentrations on graphs) and quantitatively (calculating the predicted/observed ratios for AUC, Cmax and CL as well as statistical analysis using model prediction power metrics). They were then applied to predict the PKs of both drugs in pregnancy population models. The temporal changes in maternal enzymatic activities during gestation were modelled based on in vitro data reported in literature and default relationships encoded in the Simcyp platform for UGT1A1 and UGT1A4, respectively. Our study demonstrates the successful development and validation of a PBPK model for LTG and RTG in pregnancy population models. Future work with additional UGT1A4 substrate drugs using the proposed changes in UGT1A4 activity may enable validating the pregnancy population model and its subsequent use for the prospective prediction of PK.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3