DICOMization of Proprietary Files Obtained from Confocal, Whole-Slide, and FIB-SEM Microscope Scanners

Author:

Gupta YubrajORCID,Costa Carlos,Pinho EduardoORCID,Bastião Silva Luís

Abstract

The evolution of biomedical imaging technology is allowing the digitization of hundreds of glass slides at once. There are multiple microscope scanners available in the market including low-cost solutions that can serve small centers. Moreover, new technology is being researched to acquire images and new modalities are appearing in the market such as electron microscopy. This reality offers new diagnostics tools to clinical practice but emphasizes also the lack of multivendor system’s interoperability. Without the adoption of standard data formats and communications methods, it will be impossible to build this industry through the installation of vendor-neutral archives and the establishment of telepathology services in the cloud. The DICOM protocol is a feasible solution to the aforementioned problem because it already provides an interface for visible light and whole slide microscope imaging modalities. While some scanners currently have DICOM interfaces, the vast majority of manufacturers continue to use proprietary solutions. This article proposes an automated DICOMization pipeline that can efficiently transform distinct proprietary microscope images from CLSM, FIB-SEM, and WSI scanners into standard DICOM with their biological information maintained within their metadata. The system feasibility and performance were evaluated with fifteen distinct proprietary modalities, including stacked WSI samples. The results demonstrated that the proposed methodology is accurate and can be used in production. The normalized objects were stored through the standard communications in the Dicoogle open-source archive.

Funder

Marie Sklodowska Curie ITN-EID, Horizon 2020 project IMAGE-IN

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The digital revolution in veterinary pathology;Journal of Comparative Pathology;2024-10

2. Internet of Things in Healthcare and Picture Archiving and Communication System (PACS);2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

3. Personalizable AI platform for universal access to research and diagnosis in digital pathology;Computer Methods and Programs in Biomedicine;2023-12

4. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence;RadioGraphics;2023-12-01

5. Deep Learning within a DICOM WSI Viewer for Histopathology;Applied Sciences;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3