Computational Fluid Dynamic Study with Comfort Analysis in Large Atrium of the Angelo Hospital in Venice

Author:

Ferrucci MargheritaORCID,Romagnoni Piercarlo,Peron FabioORCID,Strada Mauro

Abstract

To improve the thermal comfort in the hall of the Angelo Hospital (Venezia) an analysis was developed by using Computation Fluid Dynamics and considering some configurations for the air-conditioning system and for the solar shading devices. The reference configuration consists of the installation of four fan coils in the area coupled with a 3 m high metal casing used for solar shading. Then, three other solutions are proposed: by increasing the number of fan coils and changing their position, by adding some radiant panels arranged on the walls, and by inserting a physical confinement as a lateral confinement. The study consists of three sections. Firstly, a section in which the study area is modelled through a strong simplification that allows to represent only a slice of the domain but to immediately evaluate the role of the casing. A second section in which the area is completely modelled, and a third section in which a comfort evaluation is carried out. The analysis shows that the metal casing brings a substantial benefit due to the solar shielding it causes. The radiant panels cool the area only near the wall. The increasing of the number of the fans leads to an excessively high air speed and localized discomfort due to drafts. The lateral confinement on the north and south side is the one that guarantees better cooling of the study area.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. The influence of atrium on energy performance of hotel building

2. Evaluation of thermal comfort in Galatsi Arena of the Olympics “Athens 2004” using a CFD model

3. Numerical analysis and improvement of air flow pattern for the Great Hall of the People;Zhao;Build. Therm. Energy Vent. Air Cond.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3