Lactate as a Predictor of 30-Day Mortality in Cardiogenic Shock

Author:

Klemm Gregor1,Markart Sebastian1,Hermann Alexander2ORCID,Staudinger Thomas2,Hengstenberg Christian1ORCID,Heinz Gottfried1,Zilberszac Robert1ORCID

Affiliation:

1. Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria

2. Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria

Abstract

Background/Objectives: This study sought to evaluate the efficacy of various lactate measurements within the first 24 h post-intensive care unit (ICU) admission for predicting 30-day mortality in cardiogenic shock patients. It compared initial lactate levels, 24 h levels, peak levels, and 24 h clearance, alongside the Simplified Acute Physiology Score 3 (SAPS3) score, to enhance early treatment decision-making. Methods: A retrospective analysis of 64 patients assessed the prognostic performance of lactate levels and SAPS3 scores using logistic regression and AUROC calculations. Results: Of the baseline parameters, only the SAPS3 score predicted survival independently. The lactate level after 24 h (LL) was the most accurate predictor of mortality, outperforming initial levels, peak levels, and 24 h-clearance, and showing a significant AUROC. LL greater than 3.1 mmol/L accurately predicted mortality with high specificity and moderate sensitivity. Conclusions: Among lactate measurements for predicting 30-day mortality in cardiogenic shock, the 24 h lactate level was the most effective one, suggesting its superiority for early prognostication over initial or peak levels and lactate clearance.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3