Optimizing Torque Delivery for an Energy-Limited Electric Race Car Using Model Predictive Control

Author:

Maull ThomasORCID,Schommer AdrianoORCID

Abstract

This paper presents a torque controller for the energy optimization of the powertrain of an electric Formula Student race car. Limited battery capacity within electric race car designs requires energy management solutions to minimize lap time while simultaneously controlling and managing the overall energy consumption to finish the race. The energy-managing torque control algorithm developed in this work optimizes the finite onboard energy from the battery pack to reduce lap time and energy consumption when energy deficits occur. The longitudinal dynamics of the vehicle were represented by a linearized first-principles model and validated against a parameterized electric Formula Student race car model in commercial lap time simulation software. A Simulink-based model predictive controller (MPC) architecture was created to balance energy use requirements with optimum lap time. This controller was tested against a hardware-limited and torque-limited system in a constant torque request and a varying torque request scenario. The controller decreased the elapsed time to complete a 150 m straight-line acceleration by 11.4% over the torque-limited solution and 13.5% in a 150 m Formula Student manoeuvre.

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3