Learning the Meta Feature Transformer for Unsupervised Person Re-Identification

Author:

Li Qing1ORCID,Yan Chuan2,Peng Xiaojiang1ORCID

Affiliation:

1. College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China

2. Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

Abstract

Although unsupervised person re-identification (Re-ID) has drawn increasing research attention, it still faces the challenge of learning discriminative features in the absence of pairwise labels across disjoint camera views. To tackle the issue of label scarcity, researchers have delved into clustering and multilabel learning using memory dictionaries. Although effective in improving unsupervised Re-ID performance, these methods require substantial computational resources and introduce additional training complexity. To address this issue, we propose a conceptually simple yet effective and learnable module effective block, named the meta feature transformer (MFT). MFT is a streamlined, lightweight network architecture that operates without the need for complex networks or feature memory bank storage. It primarily focuses on learning interactions between sample features within small groups using a transformer mechanism in each mini-batch. It then generates a new sample feature for each group through a weighted sum. The main benefits of MFT arise from two aspects: (1) it allows for the use of numerous new samples for training, which significantly expands the feature space and enhances the network’s generalization capabilities; (2) the trainable attention weights highlight the importance of samples, enabling the network to focus on more useful or distinguishable samples. We validate our method on two popular large-scale Re-ID benchmarks, where extensive evaluations show that our MFT outperforms previous methods and significantly improves Re-ID performances.

Funder

Shenzhen Technology University School-Level Research Project

National Natural Science Foundation of China

Stable Support Projects for Shenzhen Higher Education Institutions

Natural Science Foundation of Top Talent of SZTU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3