A Novel Modified Discrete Differential Evolution Algorithm to Solve the Operations Sequencing Problem in CAPP Systems

Author:

Alvarez-Flores Oscar Alberto1,Rivera-Blas Raúl1ORCID,Flores-Herrera Luis Armando1ORCID,Rivera-Blas Emmanuel Zenén2ORCID,Funes-Lora Miguel Angel3,Niño-Suárez Paola Andrea1

Affiliation:

1. Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica Azcapotzalco, CDMX 02250, Santa Catarina, Mexico

2. Instituto Tecnológico Superior de Alvarado, Veracruz, Departamento de Ingeniería en Sistemas Computacionales, La Trocha, Alvarado 95270, Veracruz, Mexico

3. Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Operation Sequencing (OS) is one of the most critical tasks in a CAPP system. This process could be modelled as a combinatorial problem where finding a suitable solution within a reasonable time interval is difficult. This work implements a novel Discrete Differential Evolution Algorithm (DDEA) to solve the OS problem, focusing on parts of up to 76 machining operations; the relationships among operations are represented as a directed graph; the contributions of the DDEA are as follows: (1) operates with a discrete representation in the space of feasible solutions; (2) employs mutation and crossover operators to update solutions and to reduce machining and setup costs, (3) possess a local search strategy to achieve better solutions, and (4) integrates a statistical method based on quantiles to measure the quality and likelihood for an achieving a solution. To demonstrate the efficiency and robustness of the DDEA, five prismatic parts with different numbers of machining operations as benchmarks to address the OS problem were selected. The results generated the same OS for parts with a few machining operations (up to 23 machining operations). Conversely, for parts with more machining operations, the DDEA needs more runs to achieve the best solution.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3