Multi-Effect Enhanced Raman Scattering Based on Au/ZnO Nanorods Structures

Author:

Lin Yi,Zhang Jun,Zhang Yalan,Yan Sai,Nan Feng,Yu Yanlong

Abstract

Surface-enhanced Raman scattering (SERS) was considered a potential spectroscopic technique for applications of molecular detection and has drawn great research interest during the past decade. So far, fabrications of cost-effective SERS substrates with high sensitivity and stability and the corresponding enhanced mechanisms are always among the list of research topics, although great progress has been made. In this work, Au particles were decorated on Si, ZnO film and ZnO nanorod arrays simultaneously by an economical method of ion sputtering, generating three kinds of SERS substrates for R6G detection. The morphology difference of Au particles on different samples and the consequent influence on Raman scattering were studied. The experiment results exhibited that substrates with Au particles decorated on ZnO nanorods had the highest Raman enhancement factor. Furthermore, multi-effect enhanced mechanisms summarized as localized surface plasmon resonance (LSPR) filed coupling, electron transferring induced by LSPR of Au particles and whispering gallery mode (WGM) effect of the ZnO cavity were presented. This work provides a convenient and efficient method of fabricating SERS substrates and indicates that such proper metal/semiconductor composite structures are promising candidates for SERS applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3