Improved Dehydrogenation Properties of LiAlH4 by Addition of Nanosized CoTiO3

Author:

Ali Nurul AmirahORCID,Ahmad Muhammad Amirul NawiORCID,Yahya Muhammad SyarifuddinORCID,Sazelee NoratiqahORCID,Ismail MohammadORCID

Abstract

Despite the application of lithium aluminium hydride (LiAlH4) being hindered by its sluggish desorption kinetics and unfavourable reversibility, LiAlH4 has received special attention as a promising solid-state hydrogen storage material due to its hydrogen storage capacity (10.5 wt.%). In this work, investigated for the first time was the effect of the nanosized cobalt titanate (CoTiO3) which was synthesised via a solid-state method on the desorption behaviour of LiAlH4. Superior desorption behaviour of LiAlH4 was attained with the presence of a CoTiO3 additive. By means of the addition of 5, 10, 15 and 20 wt.% of CoTiO3, the initial desorption temperature of LiAlH4 for the first stage was reduced to around 115–120 °C and the second desorption stage was reduced to around 144–150 °C, much lower than for undoped LiAlH4. The LiAlH4-CoTiO3 sample also presents outstanding desorption kinetics behaviour, desorbing hydrogen 30–35 times faster than undoped LiAlH4. The LiAlH4-CoTiO3 sample could desorb 3.0–3.5 wt.% H2 in 30 min, while the commercial and milled LiAlH4 desorbs <0.1 wt.% H2. The apparent activation energy of the LiAlH4-CoTiO3 sample based on the Kissinger analysis was decreased to 75.2 and 91.8 kJ/mol for the first and second desorption stage, respectively, lower by 28.0 and 24.9 kJ/mol than undoped LiAlH4. The LiAlH4-CoTiO3 sample presents uniform and smaller particle size distribution compared to undoped LiAlH4, which is irregular in shape with some agglomerations. The experimental results suggest that the CoTiO3 additive promoted notable advancements in the desorption performance of LiAlH4 through the in situ-formed AlTi and amorphous Co or Co-containing active species that were generated during the desorption process.

Funder

Universiti Malaysia Terengganu

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3