Tree Recognition and Crown Width Extraction Based on Novel Faster-RCNN in a Dense Loblolly Pine Environment

Author:

Cai Chongyuan123ORCID,Xu Hao4,Chen Sheng5,Yang Laibang6,Weng Yuhui7ORCID,Huang Siqi8,Dong Chen123,Lou Xiongwei123

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

2. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Zhejiang A&F University, Hangzhou 311300, China

3. Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China

4. Zhejiang Forestry Bureau, Hangzhou 310000, China

5. Center for Forest Resource Monitoring of Zhejiang Province, Hangzhou 310000, China

6. Hangzhou Ganzhi Technology Co., Ltd., Lin’an 311300, China

7. College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA

8. Longquan Urban Forestry Workstation, Longquan 323700, China

Abstract

Tree crown width relates directly to wood quality and tree growth. The traditional method used to measure crown width is labor-intensive and time-consuming. Pairing imagery taken by an unmanned aerial vehicle (UAV) with a deep learning algorithm such as a faster region-based convolutional neural network (Faster-RCNN) has the potential to be an alternative to the traditional method. In this study, Faster-RCNN outperformed single-shot multibox detector (SSD) for crown detection in a young loblolly pine stand but performed poorly in a dense, mature loblolly pine stand. This paper proposes a novel Faster-RCNN algorithm for tree crown identification and crown width extraction in a forest stand environment with high-density loblolly pine forests. The new algorithm uses Residual Network 101 (ResNet101) and a feature pyramid network (FPN) to build an FPN_ResNet101 structure, improving the capability to model shallow location feature extraction. The algorithm was applied to images from a mature loblolly pine plot in eastern Texas, USA. The results show that the accuracy of crown recognition and crown width measurement using the FPN_ResNet101 structure as the backbone network in Faster-RCNN (FPN_Faster-RCNN_ResNet101) was high, being 95.26% and 0.95, respectively, which was 4.90% and 0.27 higher than when using Faster-RCNN with ResNet101 as the backbone network (Faster-RCNN_ResNet101). The results fully confirm the effectiveness of the proposed algorithm.

Funder

Zhejiang Natural Science Foundation Project

ETPPRP

McIntire Stennis program

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3