Development of a 2-D Array Ultrasonic Transducer for 3-D Imaging of Objects Immersed in Water

Author:

Patricio Rodrigues Estevão,Francisco de Oliveira Timoteo,Yassunori Matuda MarceloORCID,Buiochi FlávioORCID

Abstract

Most works that address 2-D array ultrasonic transducers for underwater applications are about the geometry aspects of the array and beamforming techniques to make 3-D images. They look for techniques to reduce the number of elements from wide apertures, maintaining the side lobes and the grating lobes at acceptable levels, but not many details about the materials and fabrication processes are described. To overcome these gaps, this paper presents in detail the development of a 2-D array ultrasonic transducer prototype that can individually emit and receive ultrasonic pulses to make 3-D images of immersed reflectors within a volume of interest (VOI). It consists of a 4 × 4 matrix ultrasonic transducer with a central frequency of 480 kHz. Each element is a 5 mm sided square cut into a 1–3 piezocomposite. The center-to-center distance of two contiguous elements (pitch) was chosen to be greater than half wavelength, to increase the amplitude of emission and reception of signals with larger elements. Artifacts generated by grating lobes were avoided by restricting the field of view in the azimuth and elevation directions within 40° × 40° and applying the sign coherence factor (SCF) filter. Two types of backing layer materials were tested, one with air and another made of epoxy resin, on the transducers called T1 and T2, respectively. The pulse echoes measured with T1 had 2.6 dB higher amplitude than those measured with T2, and the bandwidths were 54% and 50% @ −6 dB, respectively, exciting the element with a single rectangular negative pulse. The 3-D images obtained with full matrix capture (FMC) data sets acquired of objects from 0.2 to 1.15 m motivate the development of a 2-D array transducer with more elements, to increase the angular resolution and the range.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Petrobras

Financiadora de Estudos e Projetos

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3