Abstract
In this paper we proposed a wearable electrocardiogram (ECG) telemonitoring system for atrial fibrillation (AF) detection based on a smartphone and cloud computing. A wearable ECG patch was designed to collect ECG signals and send the signals to an Android smartphone via Bluetooth. An Android APP was developed to display the ECG waveforms in real time and transmit every 30 s ECG data to a remote cloud server. A machine learning (CatBoost)-based ECG classification method was proposed to detect AF in the cloud server. In case of detected AF, the cloud server pushed the ECG data and classification results to the web browser of a doctor. Finally, the Android APP displayed the doctor’s diagnosis for the ECG signals. Experimental results showed the proposed CatBoost classifier trained with 17 selected features achieved an overall F1 score of 0.92 on the test set (n = 7270). The proposed wearable ECG monitoring system may potentially be useful for long-term ECG telemonitoring for AF detection.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Beijing Municipal Education Commission
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献