A Platform for Ultra-Fast Proton Probing of Matter in Extreme Conditions

Author:

Volpe Luca12ORCID,Cebriano Ramírez Teresa2,Sánchez Carlos Sánchez12,Perez Alberto2,Curcio Alessandro23,De Luis Diego2,Gatti Giancarlo2,Kebladj Berkhahoum4,Khetari Samia4ORCID,Malko Sophia5,Perez-Hernandez Jose Antonio2ORCID,Frias Maria Dolores Rodriguez26

Affiliation:

1. ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain

3. INFN-LNF, Via Enrico Fermi 40, 00044 Frascati, Rome, Italy

4. Department of Fundamental Physics, University of Salamanca, 37008 Salamanca, Spain

5. Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08536, USA

6. Departamento de Física y Matemáticas, University of Alcalá, Plaza de San Diego s/n, 28801 Madrid, Spain

Abstract

Recent developments in ultrashort and intense laser systems have enabled the generation of short and brilliant proton sources, which are valuable for studying plasmas under extreme conditions in high-energy-density physics. However, developing sensors for the energy selection, focusing, transport, and detection of these sources remains challenging. This work presents a novel and simple design for an isochronous magnetic selector capable of angular and energy selection of proton sources, significantly reducing temporal spread compared to the current state of the art. The isochronous selector separates the beam based on ion energy, making it a potential component in new energy spectrum sensors for ions. Analytical estimations and Monte Carlo simulations validate the proposed configuration. Due to its low temporal spread, this selector is also useful for studying extreme states of matter, such as proton stopping power in warm dense matter, where short plasma stagnation time (<100 ps) is a critical factor. The proposed selector can also be employed at higher proton energies, achieving final time spreads of a few picoseconds. This has important implications for sensing technologies in the study of coherent energy deposition in biology and medical physics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3