Pattern Recognition of Single-Channel sEMG Signal Using PCA and ANN Method to Classify Nine Hand Movements

Author:

Arozi Moh,Caesarendra WahyuORCID,Ariyanto Mochammad,Munadi M.,Setiawan Joga D.,Glowacz AdamORCID

Abstract

A number of researchers prefer using multi-channel surface electromyography (sEMG) pattern recognition in hand gesture recognition to increase classification accuracy. Using this method can lead to computational complexity. Hand gesture classification by employing single channel sEMG signal acquisition is quite challenging, especially for low-rate sampling frequency. In this paper, a study on the pattern recognition method for sEMG signals of nine finger movements is presented. Common surface single channel electromyography (sEMG) was used to measure five different subjects with no neurological or muscular disorder by having nine hand movements. This research had several sequential processes (i.e., feature extraction, feature reduction, and feature classification). Sixteen time-domain features were employed for feature extraction. The features were then reduced using principal component analysis (PCA) into two and three-dimensional feature space. The artificial neural network (ANN) classifier was tested on two different feature sets: (1) using all principal components obtained from PCA (PC1–PC3) and (2) using selected principal components (PC2 and PC3). The third best principal components were then used for classification using ANN. The average accuracy using all subject signals was 86.7% to discriminate the nine finger movements.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Major lower limb amputations in the elderly observed over ten years: the role of diabetes and peripheral arterial disease

2. At RSC, 35% Diabetic Patients were Amputated Shttp://www.tribunnews.com/kesehatan/2011/11/03/di-rscm-35-persen-penderita-diabetes-diamputasi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3