Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility

Author:

Awais MuhammadORCID,Ashraf Jawad,Wang Lili,Liu Liya,Yang Xiaoxue,Tong Li-Tao,Zhou Xianrong,Zhou Sumei

Abstract

The changes in structure and digestion properties of mung bean starch due to hydrothermal treatment at various controlled temperatures were investigated. Results showed the increase in onset temperature (To) from 66.33 °C to 76.69 °C and decrease in enthalpies (∆Hg and ∆Hr) until the starch was completely gelatinized. The degree of molecular order (DMO) and degree of double helix (DDH) were significantly (p < 0.05) reduced from 1.35 to 1.01 and 1.38 to 0.98 respectively. X-ray diffraction (XRD) indicated the consecutive decrease in relative crystallinity (RC) while RVA analysis showed that peak and final viscosities were decreased significantly (p < 0.05). However, digestion kinetics indicated that degree of gelatinization increased the access of enzymes. As starch was partially gelatinized it yielded significantly lower glycemic index but no significant (p > 0.05) change in starch digestibility was observed after 70 °C. Hence, 70 °C can be considered as the critical hydrothermal treatment temperature in mung bean starch. Pearson’s correlation analysis indicated that controlled hydrothermal treatment had negative effect on the DMO, DDH, RC and the granular damage increased vulnerability of mung bean starch to digestion. These findings gave insight into sequential changes in the structure and digestibility occurring during gelatinization process due to hydrothermal treatment. Controlled gelatinization in mung beans at 70 °C is useful and must be employed to produce the foods with lower starch digestibility.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3