Metal-Doped Nanostructured Carbonic Materials and Their H2 Adsorption—An Experimental Approach

Author:

Mirea RaduORCID,Rimbu Gimi A.ORCID,Iordoc Mihai

Abstract

Experimental assessment of the hydrogen (H2)-adsorption capacities of metal-doped carbon nanostructured materials were investigated in this study. Given their intrinsic characteristics, nanostructured carbonic materials show great potential for different applications that require H2, one such being their use as hydrogen carriers in the automotive sector. The current paper considers two types of carbonic substrates (carbon nanotubes and polyaniline) functionalized and doped with platinic metals: Pt, Ru and Ir. The H2-adsorption capacities of the materials were assessed at 293 K and at relatively low pressures (10, 20 and 30 bar). Thus, nanostructured polyaniline (p-C6H5NH2) and multi-walled carbon nanotubes (MW-CNTs) were subject to noble-metal doping in order to assess their physical H2-adsorption capacities. The two types of substrates have different structures and characteristics, one being a “synthetic metal” and the other an amorphous carbon substrate. The metals used for doping were Platinum (Pt), Iridium (Ir) and Ruthenium (Ru), and the doping procedure consisted of chemical reaction between the metals’ salts and the carbonic substrate after the latter’s physical activation. Physical H2-adsorption capacity was determined with equipment designed to measure porous materials’ adsorption capacities at pressures ranging from 1 to 200 bar. The obtained results showed an increase inH2-adsorption capacity of 293% from 10 to 30 bar for Ru, 270% for Ir and 256% for Pt doping in the case of the MW-CNTs, and 296% for Ru, 282% for Ir and 251% for Pt from 10 to 30 bar in the case of p-C6H5NH2. As the main conclusion, even though Pt is known to be the main metal used in reactions involving H2, Ru and Ir showed better potential for this application, namely, as hydrogen-carrier materials for use in the automotive sector.

Funder

Na-tional Institute for R&D in Electrical Engineering ICPE-CA and the Romanian Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference20 articles.

1. Hydrogen storage in carbon nanotubes revisited;Carbon,2010

2. Importance of Turning to Renewable Energy Resources with Hydrogen as a Promising Candidate and on-board Storage a Critical Barrier;MRS Online Proc. Libr.,2006

3. Ulrich, J. (2013, June 11). Tiny Tubes: Hydrogen Storage inside Single-Walled Nanotubes. Available online: http://materialsviews.com/tiny-tubes-hydrogen-storage-inside-single-walled-nanotubes/.

4. Hydrogen storage in a two-liter adsorbent prototype tank for fuel cell driven vehicles;Appl. Energy,2019

5. MacDiarmid, A.G. (2005, January 19–22). Conducting polymers as potential new materials for hydrogen storage. Proceedings of the IPHE International Hydrogen Storage Technology Conference, Lucca, Italy.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3