Towards the Mechatronic Development of a New Upper-Limb Exoskeleton (SAMA)

Author:

Abdelbar M.,Mohamed I.,Abdellatif A.ORCID,Hegaze Moutaz M.

Abstract

Modern neuromuscular rehabilitation engineering and assistive technology research have been constantly developing in the last 20 years. The upper body exoskeleton is an example of an assistive rehabilitation device. However, in order to solve its technological problems, interdisciplinary research is still necessary. This paper presents a new three-degrees of freedom (DOF) active upper-body exoskeleton for medical rehabilitation named “SAMA”. Its mechanical structure is inspired by the geometry and biomechanics of the human body, particularly the ranges of motion (ROM) and the needed torque. The SAMA exoskeleton was manufactured and assembled into an ergonomic custom-made wheelchair in a sitting posture in order to provide portability and subject comfort during experimental testing and rehabilitation exercises. Dynamic modeling using MATLAB–Simulink was used for calculating the inverse kinematics, dynamic analysis, trajectory generation and implementation of proportional–integral–derivative (PID) computed torque control (PID-CTC). A new framework has been developed for rapid prototyping (the dynamic modeling, control, and experimentation of SAMA) based on the integration between MATLAB–Simulink and the Robot Operating System (ROS) environment. This framework allows the robust position and torque control of the exoskeleton and real-time monitoring of SAMA and its subject. Two joints of the developed exoskeleton were successfully tested experimentally for the desired arm trajectory. The angular position and torque controller responses were recorded and the exoskeleton joints showed a maximum delay of 200° and a maximum steady state error of 0.25°. These successful results encourage further development and testing for different subjects and more control strategies.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3