Impact of Bioaugmentation on the Bioremediation of Saline-Produced Waters Supplemented with Anaerobic Digestate

Author:

Parsy Aurélien12,Sambusiti Cecilia3,Gassie Claire1,Baldoni-Andrey Patrick2ORCID,Périé Frédéric3,Guyoneaud Rémy1ORCID

Affiliation:

1. Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR5254, Environmental Microbiology and Chemistry, 64000 Pau, France

2. TotalEnergies, PERL–Pôle D’Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47–RD 817, 64170 Lacq, France

3. TotalEnergies, CSTJF–Avenue Larribau, 64018 Pau, France

Abstract

Bioremediation of produced waters has been widely investigated in the last decades. More recently, microalgae-based treatments have been developed to produce biomass. The objective of this study was to determine, at lab scale, the remediation efficiency of three origin of microorganisms: a consortium of three halotolerant and halophilic microalgae and their associated bacteria, bacteria from liquid digestate, and aromatic-degrading bacteria selected to perform bioaugmentation. The medium was composed of artificial oil-produced water and seawater, and contained nutrients from liquid digestate. In order to identify what plays a role in nitrogen, chemical oxygen demand, and aromatics compounds elimination, and to determine the effectiveness of bioaugmentation to treat this mix of waters, 16S rRNA analyses were performed. Combination of microorganisms from different origins with the selected aromatic-degrading bacteria were also realized, to determine the effectiveness of bioaugmentation to treat these waters. Each population of microorganisms achieved similar percentage of removal during the biological treatment, with 43–76%, 59–77%, and 86–93% of elimination for ammonium, chemical oxygen demand, and aromatic compounds (with 50% of volatilization), respectively, after 7 days, and up to with 100%, 77%, and 99% after 23 days, demonstrating that in the case of this produced water, bioaugmentation with the specialized aromatic-degrading bacteria had no significant impact on the treatment. Regarding in detail the populations present and active during the tests, those from genus Marinobacter always appeared among the most active microorganisms, with some strains of this genus being known to degrade aromatic compounds.

Funder

TotalEnergies

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3