A Facile Method for the Fabrication of Luminescent Eu3+-Doped SiO2 Nanowires

Author:

Gao Fei,Zhao Xinyu,Liu Jinglin

Abstract

Europium trivalent ion (Eu3+)-doped silica nanowires were prepared, and the positioning of Eu3+ in the silicon dioxide nanowire matrix was researched. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and energy-dispersive X-ray spectroscope analysis (EDX) were used to characterize the product’s morphology and structure. The representation of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) were indicative of the presence of a covalent Eu-O-Si bond. The results suggest that Eu3+ was successfully doped into amorphous silica. Furthermore, a sol-gel inorganic−organic co-assembly mechanism model was proposed to illuminate the formation of the rare-earth ion-doped nanowires. In addition, photoluminescent emission of europium ions in a silica matrix was further discussed. It was demonstrated that a 10% content of Eu3+ resulted in a quenching effect and after annealing at 650 °C, the europium ions in the nanowires had a high luminescence intensity due to the silica network structure.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3