Inhibition of EZH2 Causes Retrotransposon Derepression and Immune Activation in Porcine Lung Alveolar Macrophages

Author:

Zhang Liangliang1,Jin Jian1ORCID,Qin Weiyun12,Jiang Jing1,Bao Wenbin2ORCID,Sun Ming-an134ORCID

Affiliation:

1. Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China

2. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

3. Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China

4. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

Abstract

Alveolar macrophages (AMs) form the first defense line against various respiratory pathogens, and their immune response has a profound impact on the outcome of respiratory infection. Enhancer of zeste homolog 2 (EZH2), which catalyzes the trimethylation of H3K27 for epigenetic repression, has gained increasing attention for its immune regulation function, yet its exact function in AMs remains largely obscure. Using porcine 3D4/21 AM cells as a model, we characterized the transcriptomic and epigenomic alterations after the inhibition of EZH2. We found that the inhibition of EZH2 causes transcriptional activation of numerous immune genes and inhibits the subsequent infection by influenza A virus. Interestingly, specific families of transposable elements, particularly endogenous retrovirus elements (ERVs) and LINEs which belong to retrotransposons, also become derepressed. While some of the derepressed ERV families are pig-specific, a few ancestral families are known to be under EZH2-mediated repression in humans. Given that derepression of ERVs can promote innate immune activation through “viral mimicry”, we speculate that ERVs may also contribute to the coinciding immune activation in AMs after the inhibition of EZH2. Overall, this study improves the understanding of the EZH2-related immune regulation in AMs and provides novel insights into the epigenetic regulation of retrotransposons in pigs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3