Affiliation:
1. Actinium Chemical Research, Via Casilina 1626A, 00133 Rome, Italy
Abstract
The vulcanization of rubber compounds is an exothermal process. A carbon black-filled and natural rubber-based (NR) formulation was mixed with different levels of sulfur (0.5, 1.0, 2.0, 4.0 and 6.0 phr) and studied with differential scanning calorimetry (DSC) for the determination of the vulcanization enthalpy. It was found that the vulcanization enthalpy is dependent on the amount of sulfur present in the compound and the vulcanization heat released was −18.4 kJ/mol S if referred to the entire rubber compound formulation or −46.0 kJ/mol S if the heat released is referred only to the NR present in the compound. The activation energy for the vulcanization of the rubber compounds was also determined by a DSC study at 49 kJ/mol and found to be quite independent from the sulfur content of the compounds under study. A simplified thermochemical model is proposed to explain the main reactions occurring during the vulcanization. The model correctly predicts that the vulcanization is an exothermal process although it gives an overestimation of the vulcanization enthalpy (which is larger for the EV vulcanization package and smaller for the conventional vulcanization system). If the devulcanization is conducted mechanochemically in order to break selectively the sulfur-based crosslinks, then the natural rubber compounds recovered from used tires can be re-vulcanized again and the exothermicity of such process can be measured satisfactorily with DSC analysis. This paper not only proposes a simplified mechanism of vulcanization and devulcanization but also proposes an analytical method to check the devulcanization status of the recycled rubber compound in order to distinguish truly devulcanized rubber from reclaimed rubber.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献