Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization

Author:

Khonina Svetlana N.12ORCID,Ustinov Andrey V.2,Porfirev Alexey P.12,Karpeev Sergey V.12

Affiliation:

1. Scientific Research Laboratory of Automated Systems of Scientific Research (SRL-35), Samara National Research University, Moskovskoye Shosse 34, 443086 Samara, Russia

2. Image Processing Systems Institute, National Research Centre “Kurchatov Institute”, Molodogvardeyskaya Str. 151, 443001 Samara, Russia

Abstract

Interference of two and four light beams with linear or circular polarization is studied analytically and numerically based on the Richards–Wolf formalism. We consider such characteristics of the interference fields as the distribution of intensity, polarization, and spin angular momentum density. The generation of light fields with 1D and 2D periodic structure of both intensity and polarization is demonstrated. We can control the periodic structure both by changing the polarization state of the interfering beams and by changing the numerical aperture of focusing. We consider examples with a basic configuration, as well as those with a certain symmetry in the polarization state of the interfering beams. In some cases, increasing the numerical aperture of the focusing system significantly affects the generated distributions of both intensity and polarization. Experimental results, obtained using a polarization video camera, are in good agreement with the simulation results. The considered light fields can be used in laser processing of thin films of photosensitive (as well as polarization-sensitive) materials in order to create arrays of various ordered nano- and microstructures.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3