Abstract
Jones–Stokes polarimetry is a robust in vitro polarimetric technique that can be used to investigate the anisotropic properties of a birefringent medium. The study of spatially resolved Jones matrix components of an object is a heuristic approach to extract its phase and polarization information. However, direct interpretation of Jones matrix elements and their decomposition into associated anisotropic properties of a sample is still a challenging research problem that needs to be investigated. In this paper, we experimentally demonstrate combined Jones–Stokes polarimetry to investigate the amplitude, phase, and polarization modulation characteristics of a twisted nematic liquid crystal spatial light modulator (TNLC-SLM). The anisotropic response of the SLM is calibrated for its entire grayscale range. We determine the inevitable anisotropic properties viz., diattenuation, retardance, isotropic absorption, birefringence, and dichroism, which are retrieved from the measured Jones matrices of the SLM using Jones polar decomposition and a novel algebraic approach for Jones matrix decomposition. The results of this study provide a complete polarimetric calibration of the SLM within the framework of its anisotropic characteristics.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献