Automatic Choroid Vascularity Index Calculation in Optical Coherence Tomography Images with Low-Contrast Sclerochoroidal Junction Using Deep Learning

Author:

Arian Roya1,Mahmoudi Tahereh2,Riazi-Esfahani Hamid3ORCID,Faghihi Hooshang3,Mirshahi Ahmad3,Ghassemi Fariba3,Khodabande Alireza3,Kafieh Raheleh14,Khalili Pour Elias3

Affiliation:

1. Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

2. Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran

3. Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 14176-13151, Iran

4. Department of Engineering, Durham University, South Road, Durham DH1 3LE, UK

Abstract

The choroidal vascularity index (CVI) is a new biomarker defined for retinal optical coherence tomography (OCT) images for measuring and evaluating the choroidal vascular structure. The CVI is the ratio of the choroidal luminal area (LA) to the total choroidal area (TCA). The automatic calculation of this index is important for ophthalmologists but has not yet been explored. In this study, we proposed a fully automated method based on deep learning for calculating the CVI in three main steps: 1—segmentation of the choroidal boundary, 2—detection of the choroidal luminal vessels, and 3—computation of the CVI. The proposed method was evaluated in complex situations such as the presence of diabetic retinopathy and pachychoroid spectrum. In pachychoroid spectrum, the choroid is thickened, and the boundary between the choroid and sclera (sclerochoroidal junction) is blurred, which makes the segmentation more challenging. The proposed method was designed based on the U-Net model, and a new loss function was proposed to overcome the segmentation problems. The vascular LA was then calculated using Niblack’s local thresholding method, and the CVI value was finally computed. The experimental results for the segmentation stage with the best-performing model and the proposed loss function used showed Dice coefficients of 0.941 and 0.936 in diabetic retinopathy and pachychoroid spectrum patients, respectively. The unsigned boundary localization errors in the presence of diabetic retinopathy were 3 and 20.7 μm for the BM boundary and sclerochoroidal junction, respectively. Similarly, the unsigned errors in the presence of pachychoroid spectrum were 21.6 and 76.2 μm for the BM and sclerochoroidal junction, respectively. The performance of the proposed method to calculate the CVI was evaluated; the Bland–Altman plot indicated an acceptable agreement between the values allocated by experts and the proposed method in the presence of diabetic retinopathy and pachychoroid spectrum.

Funder

Vice-Chancellery for Research and Technology of Isfahan University of Medical Sciences

National Institute for Medical Research Development

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3