Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices

Author:

Wang Zhanwen1ORCID,Wang Jingwei1,Liu Lida1,Chen Yuntian123

Affiliation:

1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

2. Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

3. Optics Valley Laboratory, Wuhan 430074, China

Abstract

This article described the implementation of rotational Bloch boundary conditions in photonic devices using the finite element method (FEM). For the electromagnetic analysis of periodic structures, FEM and Bloch boundary conditions are now widely used. The vast majority of recent research, however, focused on applying Bloch boundary conditions to periodic optical systems with translational symmetry. Our research focused on a flexible numerical method that may be applied to the mode analysis of any photonic device with discrete rotational symmetry. By including the Bloch rotational boundary conditions into FEM, we were able to limit the computational domain to the original one periodic unit, thus enhancing computational speed and decreasing memory consumption. When combined with the finite-element method, rotational Bloch boundary conditions will give a potent tool for the mode analysis of photonic devices with complicated structures and rotational symmetry. In the meantime, the degenerated modes we calculated were consistent with group theory. Overall, this study expands the numerical tools of studying rotational photonic devices, and has useful applications in the study and design of optical fibers, sensors, and other photonic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovation Project of Optics Valley Laboratory

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3