Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms

Author:

Lasalvia Maria1ORCID,Gallo Crescenzio1ORCID,Capozzi Vito1ORCID,Perna Giuseppe1ORCID

Affiliation:

1. Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy

Abstract

Colorectal cancer is very widespread in developed countries. Its diagnosis partly depends on pathologists’ experience and their laboratories’ instrumentation, producing uncertainty in diagnosis. The use of spectroscopic techniques sensitive to the cellular biochemical environment could aid in achieving a reliable diagnosis. So, we used Raman micro-spectroscopy, combined with a spectral analysis by means of machine learning methods, to build classification models, which allow colon cancer to be diagnosed in cell samples, in order to support such methods as complementary tools for achieving a reliable identification of colon cancer. The Raman spectra were analyzed in the 980–1800 cm−1 range by focusing the laser beam onto the nuclei and the cytoplasm regions of single FHC and CaCo-2 cells (modelling healthy and cancerous samples, respectively) grown onto glass coverslips. The comparison of the Raman intensity of several spectral peaks and the Principal Component Analysis highlighted small biochemical differences between healthy and cancerous cells mainly due to the larger relative lipid content in the former cells with respect to the latter ones and to the larger relative amount of nucleic acid components in cancerous cells compared with healthy ones. We considered four classification algorithms (logistic regression, support vector machine, k nearest neighbors, and a neural network) to associate unknown Raman spectra with the cell type to which they belong. The built machine learning methods achieved median values of classification accuracy ranging from 95.5% to 97.1%, sensitivity values ranging from 95.5% to 100%, and specificity values ranging from 93.9% to 97.1%. The same median values of the classification parameters, which were estimated for a testing set including unknown spectra, ranged between 93.1% and 100% for accuracy and between 92.9% and 100% for sensitivity and specificity. A comparison of the four methods pointed out that k nearest neighbors and neural networks better perform the classification of nucleus and cytoplasm spectra, respectively. These findings are a further step towards the perspective of clinical translation of the Raman technique assisted by multivariate analysis as a support method to the standard cytological and immunohistochemical methods for diagnostic purposes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3