A Hybrid Design for Frequency-Independent Extreme Birefringence Combining Metamaterials with the Form Birefringence Concept

Author:

Koral Can1ORCID,Bagci Fulya2ORCID

Affiliation:

1. Department of Health Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy

2. Department of Physics Engineering, Faculty of Engineering, Ankara University, Besevler, 06100 Ankara, Turkey

Abstract

With advances in terahertz technology, achieving high and nearly constant birefringence over a wide frequency range plays an extreme role in many advanced applications. In the past decade, significant research efforts have been devoted to creating new systems or elements with high birefringence. To our knowledge, the maximum birefringence attainable using artificial crystals, intrinsic liquid crystals or fiber-based systems has been less than unity. More importantly, the birefringence created in previous studies has exhibited a strong frequency dependence, limiting their practical applications. In this work, we propose a novel approach to achieve extraordinarily high birefringence over a broad terahertz frequency band (>100 GHz). To address the limitation of frequency dependence, we combined the principle of metamaterials with the form birefringence concept. First, we designed a metamaterial with an exceptionally high refractive index, thoroughly characterizing it using simulations and analytical analysis. Next, we systematically investigated the form birefringence concept, exploring its frequency response, geometric limitations, and complex refractive index differences between constituent elements. Finally, we designed a hybrid material system, combining the strengths of both metamaterials and form birefringence. Our results demonstrate the feasibility of achieving a birefringent medium exceeding three orders of magnitude higher than previous reports while maintaining a time-invariant frequency response in the sub-terahertz regime.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3