In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry

Author:

Liu Sixun1ORCID,Wang Zhuo1ORCID,Zhai Yueyang1

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

Abstract

The low-frequency fluctuations of the atomic density within the cell can induce the longterm drift of the K-Rb-21Ne spin-exchange relaxation-free (SERF) co-magnetometer output, such that the accurate measurement of in situ atomic density is of great significance for improving the performance of co-magnetometer. In this paper, the complex refractive index model of the spin ensembles under the hybrid optical pumping condition is established first, according to which the relation between atomic density and its complex refractive index is revealed and an optical heterodyne-based scheme for atomic density detection is proposed. The dependence of the atomic density on the demodulated phase signal from the optical heterodyne-based scheme is provided by numerical simulations. After that, a dual acousto-optics frequency shifter (AOFS)-based optical heterodyne interferometry is constructed with a noise level below 1 mrad/Hz for frequencies > 1 Hz, and a compact SERF co-magnetometer is implemented as the testing medium, by which the atomic density detection with resolution of 0.40 K @ 473 K is reached and the experimental results agree well with theoretical simulations. Moreover, the detection scheme proposed in this paper has the properties of high detection sensitivity and immunity to laser power fluctuation, which are also proved experimentally.

Funder

Key Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3