Author:
Xue Jinxing,Wang Meng,Zhou Cangtao,Ruan Shuangchen
Abstract
We present the theory and simulation of attosecond transient absorption in helium atoms under the single-active-electron approximation. This study investigates the attosecond dynamics of intrinsic atomic states that interact with a field comprising vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) fields. The absorption spectrum of the helium atom is obtained from the response function, which is constructed by numerically solving the three-dimensional time-dependent Schrödinger equation. We observe a fine structure near the intrinsic atomic level, which is modulated with a 0.2 fs period. Based on high-order time-dependent perturbation theory, the frequency-dependent phase of the dipole response induced by the VUV and XUV fields is analytically obtained, and the fine structure is well explained by the phase difference. In addition, the absorption fringes are dependent on the chirp of the VUV field. This study investigates the features of the attosecond transient absorption in the VUV region, which may have valuable applications in the study of ultrafast phenomena in atoms, molecules, and solids.
Funder
the National Key R&D Program of China
the National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics