A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals

Author:

Wang Kexin1ORCID,Gao Yihong1,Dragone Mauro1,Petillot Yvan1ORCID,Wang Xu1ORCID

Affiliation:

1. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Underwater wireless optical communication (UWOC) plays key role in the underwater wireless sensor networks (UWSNs), which have been widely employed for both scientific and commercial applications. UWOC offers high transmission data rates, high security, and low latency communication between nodes in UWSNs. However, significant absorption and scattering loss in underwater channels, due to ocean water conditions, can introduce highly non-linear distortion in the received signals, which can severely deteriorate communication quality. Consequently, addressing the challenge of processing UWOC signals with low optical signal-to-noise ratios (OSNRs) is critical for UWOC systems. Increasing the transmitting optical power and investigating more advanced signal processing technologies to recover transmitted symbols are two primary approaches to improve system tolerance in noisy UWOC signal channels. In this paper, we propose and demonstrate the application of deep echo state networks (DeepESNs) for channel equalization in high-speed UWOC systems to enhance system performance with both PAM and QPSK-OFDM modulations. Our experimental results demonstrate the effectiveness of DeepESNs in UWOC systems, achieving error-free underwater transmission over 40.5 m with data rates up to 167 Mbps. Moreover, we compare the performance of DeepESNs to conventional echo state networks and provide suggestions on the configuration of a DeepESN for UWOC signals.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3