Affiliation:
1. School Key Laboratory of Space Active Optical-Electro Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2. School of Physics and Optical-Electrical Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
Abstract
Optical frequency combs have emerged as a new generation of metrological tools, driving advancements in various fields such as free-space two-way time–frequency transfer, low-noise microwave source generation, and gas molecule detection. Among them, fiber combs based on erbium-doped fiber mode-locked lasers have garnered significant attention due to their numerous advantages, including low noise, high system integration, and cost-effectiveness. In this review, we discuss recent developments in erbium-doped fiber combs and analyze the advantages and disadvantages of constructing fiber combs utilizing different erbium-doped mode-locked fiber lasers. First, we provide a brief introduction to the basic principles of optical frequency combs. Then, we explore erbium-doped fiber combs implemented utilizing various mode-locking techniques, such as nonlinear polarization rotation (NPR), real saturable absorber (SA), and nonlinear amplifying loop mirror (NALM). Finally, we present an outlook on the future perspectives of erbium-doped fiber combs.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献