Demonstration of 12.5 Mslot/s 32-PPM Underwater Wireless Optical Communication System with 0.34 Photons/Bit Receiver Sensitivity

Author:

Han Xiaotian12,Li Peng1,Li Guangying1,Chang Chang1,Jia Shuaiwei12,Xie Zhuang1,Liao Peixuan12,Nie Wenchao1,Xie Xiaoping12

Affiliation:

1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

High-capacity, long-distance underwater wireless optical communication (UWOC) technology is an important component in building fast, flexible underwater sensing networks. Underwater communication with light as a carrier has a large communication capacity, but channel loss induced by light attenuation and scattering largely limits the underwater wireless optical communication distance. To improve the communication distance, a low-power 450 nm blue continuous wave (CW) laser diode (LD)-based UWOC system was proposed and experimentally demonstrated. A communication link was designed and constructed with a BER of 3.6 × 10−3 in a total link loss of 80.72 dB in c = 0.51 m−1 water with a scintillation index (S.I.) equal to 0.02 by combining with 32-pulse-position modulation (32-PPM) at a bandwidth of 12.5 MHz and single photon counting reception techniques. The allowable underwater communication distance in Jerlov II (c = 0.528 m−1) water was estimated to be 35.64 m. The attenuation lengths were 18.82, which were equal at link distances of 855.36 m in Jerlov I (c = 0.022 m−1) water. A receiving sensitivity of 0.34 photons/bit was achieved. To our knowledge, this is the lowest receiving sensitivity ever reported under 0.1 dB of signal-to-noise ratio (SNR) in the field of UWOC.

Funder

National Key R&D Program

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3