Spontaneous Emission Studies for Blue and Green InGaN-Based Light-Emitting Diodes and Laser Diodes

Author:

Choi Dae-Choul1,Kim Yoon Seok1,Kim Kyoung-Bo2,Lee Sung-Nam1ORCID

Affiliation:

1. Department of Nano & Semiconductor Engineering, Tech University of Korea, Siheung 15073, Republic of Korea

2. Department of Materials Science and Engineering, Inha Technical College, Incheon 22212, Republic of Korea

Abstract

We investigated the efficiency droop phenomenon in blue and green GaN-based light-emitting diodes (LEDs) and laser diodes (LDs), which poses a significant challenge in high-power LEDs and is characterized by a reduction in external quantum efficiency at higher injection currents. Utilizing identical epi-structures for blue and green LEDs and LDs, with variations only in indium composition, our experiments revealed a gradual blue shift in the emission wavelengths as the injection current increased. Notably, the blue LED demonstrated a smaller shift compared to the green LED. In addition, the full width at half maximum of emission spectra increased with increasing injection current density, indicative of efficiency droop. Significantly, LDs consistently exhibited lower junction temperatures despite operating at higher current densities. This is attributed to the enhanced heat dissipation capability of the ridge waveguide LD structure, which results in a narrower emission spectrum and reduced efficiency droop compared to mesa LED structures. These outcomes highlight the efficiency of the ridge waveguide LD structure in heat dissipation from the active layer, offering crucial insights for the advancement of high-power light-emitting devices.

Funder

National Research Foundation (NRF) of Korea

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3