Sixty-Nine-Element Voice Coil Deformable Mirror for Visible Light Communication

Author:

Jiang Lv12ORCID,Hu Lifa12,Hu Qili3,Xu Xingyu12,Wu Jingjing12,Yu Lin12,Huang Yang12ORCID

Affiliation:

1. School of Science, Jiangnan University, Wuxi 214122, China

2. Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Wuxi 214122, China

3. Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology, Luoyang 471003, China

Abstract

To overcome the atmospheric turbulence aberration, and improve the quality of light beam in visible light communication (VLC), a compact 69-element deformable mirror (DM) using micro voice coil actuators was designed based on systematic theoretical analysis. The structural parameters of the micro voice coil actuator were optimized by electromagnetic theory and the finite element method. The DM was optimized from the aspects of thermal deformation, response time, coupling coefficient, and other parameters. Finally, wavefront fitting and residual calculation were completed according to the influence function. The optimized voice coil deformable mirror (VCDM) has a large phase stroke, good thermal stability, a short response time of less than 0.7 ms, and a large first resonance of 2045 Hz. The fitting residuals of the VCDM for the first 10 Zernike modes with a PV value of 8 μm are all below 10 nm (RMS). Compared with a similar DM, the obtained results from our compact VCDM indicate that it has a higher wavefront fitting precision. VCDM corrected complex random aberrations in the VLC scenario and improved the coupling efficiency of the signal beam, proving that the compact VCDM with high performance and low cost has a good application prospect in VLC systems.

Funder

National Natural Science Foundation of China

Fund for Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3