Determining System Parameters and Target Movement Directions in a Laser Self-Mixing Interferometry Sensor

Author:

Liu BinORCID,Ruan YuxiORCID,Yu YanguangORCID

Abstract

Self-mixing interferometry (SMI) is a promising sensing technology. As well as its compact structure, self-alignment and low implementation cost, it has an important advantage that conventional two-beam interferometry does not have, i.e., SMI signal fringe evolves into asymmetrical shape with increasing optical feedback level, which leads to discrimination of target movement directions for unambiguous displacement measurement possible by a single-channel interferometric signal. It is usually achieved by using SMI signals in moderate feedback regime, where the signals exhibit hysteresis and discontinuity. However, in some applications, e.g., in biomedical sensing where the target has a low reflectivity, it is hard for the SMI system to operate in a moderate feedback regime. In this work, we present comprehensive analyses on SMI signal waveforms for determining system parameters and movement directions by a single-channel weak feedback SMI signal. We first investigated the influence of two system parameters, i.e., linewidth enhancement factor and optical feedback factor, on the symmetry of SMI signals. Based on the analyses on signal waveform, we then proposed a method of estimating the system parameters and displacement directions. The method was finally verified by experiments. The results are helpful for developing sensing applications based on weak feedback SMI systems.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3