Abstract
Communication links operating at terahertz frequencies are envisioned to provide a revolutionary enhancement of data transmission. As fundamental building blocks, waveguides play an indispensable role in future terahertz networks, not only transporting data streams with unprecedented data rates, but also serving as a versatile platform for signal processing. Among various terahertz waveguides, metal-wire waveguides have attracted particular attention due to their distinct characteristics, such as structural simplicity, broad operating bandwidths, low transmission losses, and low dispersion, in turn making them promising candidates for signal processing. However, because of the tight confinement of modal energy within the wavelength-scale space, manipulating the propagating terahertz signals in-between the metal-wires is challenging. Here, we report the most recent advances in the realization of signal-processing functionalities within metal-wire waveguides. Based on these state-of-the-art methodologies, broadband signal processors that can function as filters, couplers, temporal integrators, as well as multiplexers, have been obtained. We expect this review to inspire new terahertz metal-wire signal processors with high potential for real-time tunability and reconfigurability.
Funder
Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery, Strategic, and the Canada Research Chair programs
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献