Abstract
We theoretically designed the Kretschmann configuration coupled plasmon-waveguide resonance (CPWR) sensors, composed of thin films of metal nitrides. The thicknesses of the layers of the CPWR sensors were optimized using a genetic algorithm. The optimized CPWR sensors were applied to simultaneously measure the thickness and refractive index (RI) of diamond-like carbon (DLC) films. The field profiles and the sensitivity of the CPWR sensors in response to thin DLC films were studied using the finite-different time-domain technique and the transfer matrix method. The genetic algorithm method predicted that the two-mode CPWR sensors could simultaneously analyze the thickness and RI of the DLC films as thin as 1.0 nm at a wavelength of 1550 nm. The simulations showed that the angular sensitivity toward the refractive index changes of the DLC films of the optimized CPWR sensors was comparable to that of traditional CPWR sensors.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献