Author:
Sun Jiaqi,Wang Wenwu,Li Zhihua
Abstract
A complementary metal-oxide-semiconductor (CMOS)-compatible carrier-injection plasmonic micro-ring modulator (CIPMRM) is designed and analyzed theoretically. The CIPMRM has a compacted footprint of 49.3 μm2 (R = 2 μm), a bit rate of 36.5 Gbps, insertion loss of −9.8 dB, a static extinction ratio of 21.7 dB, and energy consumption of 4.40 pJ/bit as 2.2 V peak-to-peak voltage is applied at 1550 nm. Besides, the method of resonance tuning by carrier concentration is proposed to compensate for the wavelength mismatch between the CIPMRM resonance and the laser, resulting from temperature and line width variation of the CIPMRM. This method has a faster response time and a greater ability to shift the resonant wavelength compared with the method of thermo-optic resonance tuning. The proposed scheme provides a route for realizing the compacted size modulator for optoelectronic integration.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献