Angle-Dependent Magic Optical Trap for the 6S1/2↔nP3/2 Rydberg Transition of Cesium Atoms

Author:

Bai JiandongORCID,Wang Xin,Hou Xiaokai,Liu Wenyuan,Wang JunminORCID

Abstract

The existence of an anisotropic tensor part of atomic states with an angular momentum greater than 1/2 causes their dynamic polarizabilities to be very sensitive to the polarization direction of the laser field. Therefore, the magic wavelength of the transition between two atomic states also depends on the polarization angle between the quantized axis and the polarization vector. We perform a calculation of the magic conditions of the 6S1/2↔nP3/2 (n = 50–90) Rydberg transition of cesium atoms by introducing an auxiliary electric diople transition connected to the target Rydberg state and a low-excited state. The magic condition is determined by the intersection of dynamic polarizabilities of the 6S1/2 ground state and the nP3/2 Rydberg state. The dynamic polarizability is calculated by using the sum-over-states method. Furthermore, we analyze the dependence of magic detuning on the polarization angle for a linearly polarized trapping laser and establish the relationship between magic detuning and a principal quantum number of the Rydberg state at the magic angle. The magic optical dipole trap can confine the ground-state and Rydberg-state atoms simultaneously, and the differential light shift in the 6S1/2↔nP3/2 transition can be canceled under the magic condition. It is of great significance for the application of long-lifetime high-repetition-rate accurate manipulation of Rydberg atoms on high-fidelity entanglement and quantum logic gate operation.

Funder

National Key R & D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3