CO2 Measurement under Different Pressure and Vibration Conditions Using Tunable Diode Laser Absorption Spectroscopy

Author:

Ban Deyue1,Li Nan1,Zheng Yongqiu1,Xue Chenyang1

Affiliation:

1. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China

Abstract

The greenhouse effect resulting from fuel combustion has drawn growing attention, and CO2 emissions from fossil fuel power stations are one of the main sources of greenhouse gases. It is crucial to monitor the concentration of CO2 in the flue gas ducts of these stations. However, pressure and vibration caused by the combustion of boilers make the measurement of CO2 in flue gas ducts extremely challenging. In this study, tunable diode laser absorption spectroscopy (TDLAS) combined with Wave Modulation Spectroscopy (WMS) was employed to measure the concentration of CO2 under different pressure and vibration conditions in the laboratory. The absorption line of CO2 at the wavenumber 6357.38 cm−1 was recorded under varying pressure conditions ranging from 0 to 1.4 atm, acceleration conditions ranging from 0 to 7.7 m/s2, and a combination of both. Firstly, a negative linear correlation was found between the pressure and the amplitude of the second harmonic, with a maximum relative error of 4.645% observed at a pressure of 1.4 atm. Secondly, the maximum acceleration that the system can withstand was determined to be 7.3 m/s2, as it was not possible to provide a sufficiently low fitting error at higher accelerations. For the combined effects of the pressure and vibration, a dramatic increase in the relative error of amplitude can be observed within the acceleration range of 5.0~6.0 m/s2 while under the pressure conditions of 0.6 atm, 1.0 atm, and 1.4 atm. Moreover, the maximum endurable acceleration decreases with the increase in pressure, which infers that effective measurements can be achieved when the acceleration is below 5 m/s2 within the pressure range of 0~1.4 atm. This suggests that TDLAS combined with WMS possesses a potential for online measuring of CO2 concentrations in flue gas ducts within a certain acceleration range. This work can provide some insights for stable gas detection using TDLAS under varied pressure and vibration conditions.

Funder

Fundamental Research Program of Shanxi Province

Shanxi “1331 Project” Key Subject Construction

National Natural Science Foundation of China

Research Project Supported by the Shanxi Scholarship Council of China

Central Guidance on Local Science and Technology Development Fund of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3