Narrow-Linewidth 852-nm DBR-LD with Self-Injection Lock Based on High-Finesse Optical Cavity Filtering

Author:

Hao Lili1,Chang Rui1,Hou Xiaokai1,He Jun12,Wang Junmin12ORCID

Affiliation:

1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China

2. Coaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Abstract

Narrow-linewidth lasers have a high spectral purity, long coherent length, and low phase noise, so they have important applications in atomic clocks, precision measurement, and quantum computing. We inject a transmitted laser from a narrow-linewidth (∼15 kHz) flat-concave Fabry–Perot (F-P) cavity made from ultra-low expansion (ULE) optical glass into an 852 nm distributed Bragg reflector-type laser diode (DBR-LD), of which the comprehensive linewidth is 1.67 MHz for the free running case. With an increase in the self-injection power, the laser linewidth gradually narrows, and the injection locking current range gradually increases. The narrowest linewidth measured by the delayed frequency-shifted self-heterodyne (DFSSH) method is about 365 Hz, which is about 1/4500 of the linewidth for the free running case. Moreover, to characterize the laser phase noise, we use a detuned F-P cavity to measure the conversion signal from the laser phase noise to the intensity noise for both the free running case and the self-injection lock case. The laser phase noise for the self-injection lock case is significantly suppressed in the analysis frequency range of 0.1–10 MHz compared to the free running case. In particular, the phase noise is suppressed by more than 30 dB at an analysis frequency of 100 kHz.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3