Affiliation:
1. Institute of Physics, Kazan Federal University, 18th Kremlyovskaya Street, 420008 Kazan, Russia
2. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirskii Ave., 10/7, 420029 Kazan, Russia
Abstract
Nd3+ (0.3 mol.%), Yb3+ (0, 1, 2, 3 and 5 mol.%): LiYF4 phosphors were grown by the Bridgman–Stockbarger technique. The luminescence intensity ratio (LIR) of Nd3+ (4F3/2–4I9/2, ~866 nm) and Yb3+ emission (2F5/2–2F7/2, ~980 nm) was taken as a parameter. The energy exchange between 4F3/2 (Nd3+) and 2F5/2 (Yb3+) occurs via phonons, which elucidates the LIR temperature dependence. The influence of the cross-relaxation process on the temperature sensitivity was estimated as negligible. The LIR function depends on the Yb3+ concentration at a fixed 0.3 mol.% Nd3+. The maximum Sa and Sr value were reached for Nd3+ (0.3%), Yb3+ (1.0%): LiYF4 (Sa = 0.007 K−1 at 320 K) and Nd3+ (0.3%), Yb3+ (5.0%): LiYF4 (Sr = 1, 1.03%*K−1 at 260 K), respectively.
Funder
Russian Science Foundation
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics