Parity-Time Symmetry Enabled Band-Pass Filter Featuring High Bandwidth-Tunable Contrast Ratio

Author:

Lu Xinda,Chen Nuo,Zhang Boqing,Yang Haofan,Chen Yuntian,Zhang Xinliang,Xu Jing

Abstract

Integrated optical filters based on microring resonators play a critical role in many applications, ranging from wavelength division multiplexing and switching to channel routing. Bandwidth tunable filters are capable of meeting the on-demand flexible operations in complex situations, due to their advantages of scalability, multi-functionality, and being energy-saving. Recent studies have investigated how parity-time (PT) symmetry coupled-resonant systems can be applied to the bandwidth-tunable filters. However, due to the trade-off between the bandwidth-tunable contrast ratio and insertion loss of the system, the bandwidth-tunable contrast ratio of this method is severely limited. Here, the bandwidth-tunable contrast ratio is defined as the maximum bandwidth divided by the minimum bandwidth. In this work, we show that a high bandwidth-tunable contrast ratio and low insertion loss of the system can be achieved simultaneously by increasing the coupling strength between the input port and the resonant. Theoretical analysis under different coupling states reveals that the low insertion loss can be obtained when the system initially operates at the over-coupling condition. A high bandwidth-tunable contrast ratio PT-symmetry band-pass filter with moderate insertion loss is shown on the Silicon platform. Our scheme provides an effective method to reduce the insertion loss of on-chip tunable filters, which is also applicable to the high-order cascaded microring systems.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3